
Enabling Run-time Resource-aware
Task Placement in Fog Scenario
Domenico Iezzi∗,1, Michele Zanella∗,1,
Giuseppe Massari∗,1, William Fornaciari∗,1

∗ Dipartimento di Elettronica, Informatica e Bioingegneria, Politecnico di Milano,
Via Ponzio 34/5 20133 Milan, Italy

ABSTRACT

The amount of data produced at the edge of the network led to the introduction of the Fog
Computing paradigm, as a way to assist resource constrained devices in processing and deliver-
ing data on behalf of the Cloud. This intermediate layer of computing infrastructure and services,
closer to the edge, provides better response times thanks to the physical proximity between de-
vices and computing nodes, while introducing new challenges regarding privacy, fault tolerance
and task allocation strategies. In this work we introduce a framework for distributed computation
of tasks, which extends a resource-aware programming model to abstract the underlying complex-
ity of task and data allocations.

KEYWORDS: Resource Management, Programming Model, Task Offloading, Fog Computing

1 Introduction

Nowadays, world is experiencing a new computing era. Thanks to the advent of Internet of
Things and Cloud computing, a huge number of embedded devices (sensors, actuators. . . )
can be interconnected, enabling the possibility to acquire a lot of data that can be further
processed remotely for a variety of purposes. Unfortunately, the management and transmis-
sion of all raw information from the edge to the Cloud requires ever larger data centers and
it considerably increases network bandwidth demand, making it not sustainable or very
expensive in the future. Moreover, some use-case scenarios (e.g., automotive, emergency
management. . . ) have real-time constraints and require an high responsiveness which are
not satisfied using a Cloud solution, due to latency and unreliability introduced by the In-
ternet network. Thus, in recent years, new approaches aim at shifting data processing back
to the edge devices, where data is generated, in order to: (a) extract small-sized information
from the raw data and avoid an high bandwidth consumption; (b) reduce the transmis-
sion latency to the Cloud, thus enabling faster response; (c) increase the reliability of the
system leveraging local nearby devices. At this regard, the Fog computing paradigm was
introduced by Cisco in 2012 and it includes a layer between the edge and the Cloud able
to provide computational and storage services. This layer is composed by a set of devices

1E-mail: {name.surname}@polimi.it



(e.g., embedded boards, smartphones, gateways, local servers. . . ) located nearby the data
sources. In particular, the architecture can be considered as a bi-dimensional resource space
in which data and computational tasks can be distributed among the devices both "hori-
zontally" (i.e., between devices in the same layer) and "vertically" (i.e., between devices in
different layers)[ZMGF18].

2 Run-Time Distributed Resource Management

In this context, since the highly distributed and heterogeneous nature of the system, both
in terms of devices typology and hardware architectures, we need a management system
able to deal with (a) mobility and availability of resources, (b) energy and computational
capabilities constraints of devices. In this sense, our work includes an open source resource
manager, the BarbequeRTRM[BMF15], which fit the aforementioned needs and has been ex-
tended in a distributed version. In particular, the different instances of the BarbequeRTRM,
running on the different devices, can communicate to each other through the RemoteProxy.
While the Distributed Manager module is in charge of discovering new available devices and
synchronizing the current status of the systems.

However, the complexity of such infrastructure requires to be hidden from a developer
perspective, demanding new tools and programming model. In fact, in order to improve
an efficient utilization of the system, applications have to be composed by different mod-
ules, which are called "tasks" in our jargon, that can be dispatched on separated devices.
In this way, we can represent an application through a task graph, which is a direct graph,
where the arcs represents the mapping between the kernel (i.e., a specific workload to be ex-
ecuted), the buffers (i.e., memory space in which read/store data) and the events. The nodes
can be buffers or kernels and two adjacent nodes cannot be of the same type. Exploiting the
task-graph and application information, the instances of the resource manager follow a dis-
tributed strategy to allocate the task at system-level, optimizing energy efficiency and QoS,
while implement a centralized strategy to pick the best resource allocation at device-level,
in order to optimize local metrics (e.g., temperature, load. . . ) and applications cohabitation.

To integrate the application with the resource management, we adopt a resource-aware
programming model developed for a deeply heterogeneous HPC context inside the MANGO
EU project[FAA+18, AFM+18]. Then, in order to make it compatible with the aforemen-
tioned distributed system, we develop the BeeR framework[Iez18], which allows an effective
offloading of tasks on remote targets.

3 The BeeR Framework

BeeR is an extension of the MANGO framework with the goal of targeting remote embed-
ded devices (IoT, mobile, smart objects) connected in a network, that can be exploited to
execute computational workloads. These can be components of a complex application (i.e.,
tasks), or standalone functions which returns some data. The framework consists of two
main components.

The BeeR daemon is a standalone daemon application which is usually installed on remote
devices. This daemon listens for requests coming from applications that may be running on
network nodes or general purpose computers. Through a TCP connection, the daemon is



Request

+ appId: string

+ cmd: RemoteCommand

+ id: uint32_t

+ size: size_t

+ buffer: string

Response

+ result: mango_exit_code_t

+ data: string

Figure 1: Request and Response classes used to represent message sent

Figure 2: Typical scenario where a BeeR application offload kernels and buffers to remote
devices running the daemon

able to receive kernels and buffers of the aforementioned task-graph applications. Once the
data is ready, firstly the buffers are allocated using shared memory API, then the tasks are
executed with references to the shared memory objects containing the respective buffers.
Finally, after waiting for the completion of the tasks through a specific remote call, the ap-
plication retrieves the results.

The protocol consists of a request and a response, defined as C++ classes as shown in
Figure 1. The requests contains an application id, which is unique to the application that
generated the call, a RemoteCommand field representing the action to be executed, and three
field (id, size, buffer) which are optionally used by some function (e.g a buffer write oper-
ation requires the specification of all the three fields). The response class contains a result
code and optionally a string containing a message or a buffer for some specific commands.
The framework leverage object serialization to send instance of requests and responses back
and forth.

On the other side there is the client application exploiting the BeeR library, an extended



version of the MANGO libraries providing a programming model which abstracts the un-
derlying complexity of task allocation and resource management and gives fine-grained con-
figuration mechanisms. In particular, it defines function for (a) registering binary programs
as kernels and assign an id, (b) read and write buffers, (c) start remote execution of kernels,
(d) manage the occurrence of remote events (e.g. kernel termination) and (e) retrieve statis-
tics about kernel execution. As shown in Figure 2, the library layer directly communicates
with BarbequeRTRM in order to provide run-time management of remote tasks considering
not only device resources, status and capabilities, but also application QoS requirements.
Depending on the type of application and its requirements, the resource manager can de-
cide whether to offload the task to remote devices or keep the computation local and use
edge devices only for data gathering, depending on the metrics chosen for the current ap-
plication.

Devices and applications coexists in a many to many relationship, meaning that a single
daemon instance can run kernels coming from multiple applications from different sources,
and a BeeR application can scatter its kernels to different device.

4 Conclusions

In the context of Fog computing, the complexity of the system requires a distributed resource
management approach along with a proper programming model able to deal with hetero-
geneity and mobility of resources, as well as application modularity. At this regard, our work
presents an extension of a suitable resource manager and a resource-aware task-offloading
framework. We are planning to evaluate the framework on a real cluster, containing some
low-performance embedded systems acting as edge devices and others that could act as Fog
nodes. This will be done by running a ported version of the Pathfinder algorithm from the
Rodinia suite of GPU parallel benchmarks.

References
[AFM+18] G. Agosta, W. Fornaciari, G. Massari, A. Pupykina, F. Reghenzani, and M. Zanella. Managing

heterogeneous resources in hpc systems. In Proceedings of the 9th Workshop and 7th Workshop on
Parallel Programming and RunTime Management Techniques for Manycore Architectures and Design Tools
and Architectures for Multicore Embedded Computing Platforms, PARMA-DITAM ’18, pages 7–12, New
York, NY, USA, 2018. ACM.

[BMF15] P. Bellasi, G. Massari, and W. Fornaciari. Effective runtime resource management using linux con-
trol groups with the barbequertrm framework. ACM Trans. Embed. Comput. Syst., 14(2):39:1–39:17,
March 2015.

[FAA+18] J. Flich, G. Agosta, P. Ampletzer, D. Atienza Alonso, C. Brandolese, E. Cappe, A. Cilardo, L. Dragic,
A. Dray, A. Duspara, W. Fornaciari, E. Fusella, M. Gagliardi, G. Guillaume, D. Hofman, Y. Hoor-
nenborg, A. Iranfar, M. Kovac, S. Libutti, B. Maitre, J. M. Martinez, G. Massari, K. Meinds, H. Mli-
naric, E. Papastefanakis, T. Picornell, I. Piljic, A. Pupykina, F. Reghenzani, I. Staub, R. Tornero,
M. Zanella, M. Zapater, and D. Zoni. Exploring manycore architectures for next-generation hpc
systems through the mango approach. Microprocessors and Microsystems, 61:154 – 170, 2018.

[Iez18] D. Iezzi. Beer: an unified programming approach for distributed embedded platform. 2018.

[ZMGF18] M. Zanella, G. Massari, Andrea G., and W. Fornaciari. Back to the future: Resource management
in post-cloud solutions. In Proceedings of the Workshop on INTelligent Embedded Systems Architectures
and Applications, INTESA ’18, pages 33–38, New York, NY, USA, 2018. ACM.


	Introduction
	Run-Time Distributed Resource Management
	The BeeR Framework
	Conclusions

