
BeeR daemon

BeeR daemon

BeeR daemon

Client

Barbeque
RTRM

BeeR
Library

Enabling Run-time Resource-aware
Task Placement in Fog Scenario

OUR RESEARCH

Nowadays, world is experiencing a new computing era. Thanks to the advent of Internet of Things and Cloud computing, a huge number of embedded devices (sensors, actuators. . .)
can be interconnected, enabling the possibility to acquire a lot of data that can be further processed remotely for a variety of purposes. Despite the improvements in network
technology, the huge amount of data coming from the edge is pushing bandwidth requirements, storage and computational demand to unsustainable levels. Thus, in recent years, new
approaches aim at shiing data processing back to edge devices, where data is generated, in order to: (a) extract small-sized information from the raw data and avoid an high
bandwidth consumption; (b) reduce the transmission latency to the Cloud, thus enabling faster response; (c) increase the reliability of the system leveraging local nearby devices. At
this regard, the Fog computing paradigm includes a layer between the edge and the Cloud able to provide computational and storage services. In this context, given the highly
distributed and heterogeneous nature of the system[1], both in terms of devices typology and hardware architectures, we need a management system able to deal with (a) mobility
and availability of resources, (b) energy and computational capabilities constraints of devices.

We plan to evaluate the framework on a real cluster, containing some
low-performance embedded systems acting as edge devices and
others that could act as Fog nodes.

Exploiting the task-graph and
application information, the instances
of the resource manager follow two-
level stratgy:
(a) a distributed strategy to allocate the
task at system-level, optimizing energy
efficiency and/or QoS,
(b) a centralized strategy to pick the
best resource allocation at device-level,
in order to optimize local metrics (e.g.,
temperature, load. . .) and applications
cohabitation.

RUN-TIME DISTRIBUTED
RESOURCE MANAGEMENT

REFERENCES
G.Agosta, W. Fornaciari, G. Massari, A. Pupykina, F. Reghenzani,
and M. Zanella.
Managing heterogeneous resources in hpc systems.
In Proceedings of the 9th Workshop and 7th Workshop on Parallel
Programming and RunTime Management Techniques for Manycore
ARchitectures and Design Tools and Architectures for Multicore
Embedded Computing Platforms, PARMA-DITAM '18, pages 7-12,
2018.

[1] [3]M. Zanella, G. Massari, A. Galimberti, and W. Fornaciari.
Back to the future: Resource management in post-cloud
solutions.
In Proceedings of the Workshop on INTelligent Embedded Systems
Architecture and Applications, INTESA ’18, pages 33–38, New York,
NY, USA, 2018. ACM

P. Bellasi, G. Massari, and W. Fornaciari.
Effective runtime resource management using linux control
groups with the BarbequeRTRM Framework.
ACM Trans. Embed. Comput. Syst, 2015

[2]

D. Iezzi.
Beer: an unified programming approach for distributed
embedded platform.
Master's thesis, Politecnico di Milano, 2018

[4]

To integrate the application with the resource management, we
adopt a resource-aware programming model developed for a
deeply heterogeneous HPC context inside the MANGO EU
project[3].
In fact, to improve an efficient utilization of the system,
applications have to be composed by different modules, which
are called "tasks", that can be dispatched on separated devices.

Domenico Iezzi, Michele Zanella
 Giuseppe Massari, William Fornaciari

{name.surname}@polimi.it

TASK-BASED PROGRAMMING MODEL

FUTURE WORKS

BENCHMARKING
We evaluated the framework by porting the PathFinder
benchmark from the Rodinia suite of parallel benchmarks. It
finds the path with the lowest accumulated weight from the
boom to the top of a matrix, where each cell contains a
natural number representing the weight of a node. It splits the
source matrix by columns into smaller sub-matrices and define
a task for each, so that the computation can happen in
parallel. Each task will produce an array of results which can
be finally merged.

Figure 2

Moreover, we will address the privacy and security issues by
implementing a distributed key exchange protocol and an encryption
layer as an extension of the BeeR framework.

BeeR framework allows tasks
and data, composing an
application, to be executed on
remote devices.
Each device connected through
the network will run an instance
of BeeR daemon. This is in charge
of:
(a) receiving application requests,
(b) handling incoming tasks and
(c) managing their execution.

THE BEER FRAMEWORK

The client application is compiled
with BeeR library, which provides
an easy to use API for:
(a) registering the task-graph,
(b) initializing the context and
components,
(c) starting the execution of each
kernel,
(d) handling the occurrence of
remote events (e.g. task
termination),
(e) retrieving run-time profile
information.

The open source resource manager,
BarbequeRTRM[2], fits the
aforementioned needs and has been
extended in a distributed version.
The different instances of the
BarbequeRTRM, running on the
different devices, can communicate to
each other through the RemoteProxy.
The Distributed Manager module is in
charge of discovering new available
devices and synchronizing the current
status of the systems.

In this way, we can represent an application through a task-
graph (shown in the Figure 2), which is a direct graph, where
the arcs represents the mapping between the kernels (i.e., a
specific workload to be executed), the buffers (i.e., memory
space in which read/store data) and the events.

Fieenth International Summer School on Advanced Computer Architecture and Compilation
for High-Performance and Embedded Systems (ACACES), 14-20 July 2019, Fiuggi, ITALY

