
Titolo presentazione
sottotitolo

Milano, XX mese 20XX

Scheduling
A.Y. 2017-18
ACSO Tutoring
MSc Eng. Michele Zanella

Michele Zanella, ACSO Tutoring, Scheduling

Process Scheduling

Goals:
• Multiprogramming: having some process running at all times,

to maximize CPU utilization
• Time sharing: switching the CPU among processes so

frequently that users can interact with each program while it is
running

Scheduler: it is in charge of selecting an available process for
program execution on the CPU

Michele Zanella, ACSO Tutoring, Scheduling

CPU-I/O Burst Cycle

• Process execution consists of a cycle of CPU execution and
I/O wait.

• Process execution begins with a CPU burst and is followed by
an I/O burst.

Michele Zanella, ACSO Tutoring, Scheduling

Preemptive scheduling

• Scheduling decision when:
• A process swtiches from RUNNING to WAIT state
• A process terminates
• A process swtiches from RUNNING to READY
• A process swtiches from WAITING to READY

• Non-Preemptive: once the CPU has been allocated to a
process, the process keeps the CPU until it releases it by
terminating or by switching to the WAIT state.

Michele Zanella, ACSO Tutoring, Scheduling

Dispatcher

1. Switching context
2. Switching to user mode
3. Jumping to the propoer location in the user program to restart

that program

• It should be as fast as possible

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Criteria

• CPU utilization: keeping the CPU as busy as possible
• Throughput: number of processes that are completed per

time unit
• Turnaround time: how long it takes to execute the process.

Sum of the periods spent waiting to get into memory, waiting
in the ready queue, executing on the CPU and doing I/O

• Waiting time: Amount of time that a process spends waiting
in the ready queue

• Response time: the time from the submission of a request
until the first response is produced (it takes to start
responding, not to output the response)

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: FCFS

First-Come, First-Served
• The process that requests the CPU first is allocated the CPU

first
• FIFO queue

Pro Cons

Easy	to	implement Long	average waiting

Lower CPU	and	device utilization

Non	preemptive

Troublesome for	time-sharing	systems

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: FCFS

Example:
Process Burst Time

P1 24

P2 3

P3 3

P1 P2 P3

0 24 27 30
P1	W_t =	0ms
P2	W_t =	24ms
P3	W_t =	27ms

Average W_t =	(0+24+27)/3	=	17

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: FCFS

Example:
Process Burst Time

P2 3

P3 3

P1 24

P1P2 P3

0 3 6 30
P2	W_t =	0ms
P3	W_t =	3ms
P1	W_t =	6ms

Average W_t =	(0+3+6)/3	=	3!!

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: SJF

Shortest Job First
• Associates with each process the length of the process’s next CPU

burst.
• The CPU is assigned to the process that has the smallest next CPU

burst

• Preemptive version -> Shortest-remaining-time-first
• Predicting next CPU burst:𝜏"#$ = 𝛼𝑡" + (1 − 𝛼)𝜏"

Pro Cons

Optimal (minimum	average waiting time) Difficult to	know the	length of	the	burst

For	long-term scheduler

Preemptive or	Non-preemptive

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: SJF

Example: Process Burst Time

P1 6

P2 8

P3 7

P3P4 P1

0 3 9 16
P4	W_t =	0ms
P1	W_t =	3ms
P3	W_t =	9ms

Average W_t =	(0+3+9+16)/4 =	7!!

P3 3

P2

24

P2	W_t =16ms

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: Priority

Priority Scheduling
• A priority is associated with each process and the CPU is

allocated to the process with the highest proprity (low number).
• Internal or external proprity definition

• Solution for starvation -> aging: gradually increasing the
priority of processes that wait in the system for a long time.

Pro Cons

Preemptive or	Non-preemptive Starvation

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: Priority

Example: Process Burst Time Priority

P1 10

P2 1

P3 2

P3P2 P1

0 1 11 13
P2	W_t =	0ms
P1	W_t =	1ms
P3	W_t =	11ms

Average W_t =	(0+1+11+13)/4 =	6.75ms!!

P4 1

P4

14

P4	W_t =	13ms

2

1

3
4

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: RR

Round-Robin Scheduling
• A small unit of time (time quantum) is defined.
• Designed for time-sharing systems.
• Circular ready queue.
• The CPU is allocated to each process fro a time interval of up

to 1 time quantum

Pro Cons

Preemptive Long	average waiting time

Known maximum	waiting time Turnaround time depends on	the	quantum

Performance	depends on	the	size of	quantum

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: RR

• Two cases:
1. The process may have the CPU burst of less than 1

time quantum -> The process itself releases the CPU
2. The timer goes off and causes an interrupt to the OS ->

A context switch is executed and the current process is
put in the ready queue

• The maximum waiting time for a process is: 𝑛 − 1 	𝑥	𝑞
• We want the time quantum to be large with respect to the

context-switch time

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: RR

Example: Q=4ms
Process Burst Time

P1 24

P2 3

P3 3

P1 P2 P3

0 22 26 30
P1	W_t =	(10-4)	=	6ms
P2	W_t =	4ms
P3	W_t =	7ms

Average W_t =	(6+4+7)/3	=	5.66ms

P1 P1 P1 P1 P1

18141074

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: Multi-level

Multi-level Scheduling
• Process are classified into different groups
• The ready queue is partinioned into several separate queues
• Process are permanently assigned to one queue on some

properties (e.g., memory, priority, type…)
• Scheduling among the queues is required (fixed-priority

preemptive)

Pro Cons

Low overhead Starvation

Fixed queue per	process

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: Multi-level

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: Multi-level Feedback

Multi-level Feedback Queue Scheduling
• The process is allowed to move between queues.
• Separating processes according to the characteristics of their CPU

burst
• It is defined by some parameters:

• Number of queues
• Scheduling algorithm for each queue
• Method used to determine when to upgrade a process to a

higher-priority queue
• Method used to determine when to demote a process to a

lower-priority queue
• Method used to determine which queue a process will enter

when that process needs service
• One of the most complex algorithm

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: Thread Scheduling

• User-level: Managed by the thread library
• Kernel-level: scheduled by the OS

• User-level threads must be mapped to an associated kernel-
level thread (many-to one, many-to-many)

• Process Contention Scope (PCS): competition for the CPU
takes place among threads belonging to the same process

• Priority-based, priorities set by the programmer, preemptive
• System Contention Scope (SCS): competition for the CPU

takes place among all threads in the system

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: Pthread Scheduling

• PTHREAD_SCOPE_PROCESS: schedules threads using
PCS scheduling

• PTHREAD_SCOPE_SYSTEM: schedules threads using SCS
It creates and bind a Ligthweight Process (LWP) for each
user-level thread on many-to-many systems, effectively
mapping threads using the one-to-one policy

• Two functions to get and set the contention scope policy:
• pthread_attr_setscope(…,int scope)
• pthread_attr_getscope(…, int scope)

Michele Zanella, ACSO Tutoring, Scheduling

Real-Time CPU Scheduling

• Soft real-time system: it provides no guarantee as to when a
critical real-time process will be scheduled. It guarantees only
that the process will be given preference over non-critical
processses.

• Hard real-time system: a task must be serviced by its
deadline; service after the deadline has expired is the same as
no service at all

Michele Zanella, ACSO Tutoring, Scheduling

Real-Time CPU Scheduling: minimizing latency

• RT system is typically waiting for an event in real-time to occur
• Event -> the system must respond to and service it as quickly

as possible
• Goal -> Minimizing the latency

• Event latency: the amount of time that elapses from
when an event occurs to when it is serviced

• Interrupt latency: period of time from the arrival of an
interrupt at the CPU to the start of the routine that
services the interrupt (Interrupt Service Routine, ISR) ->
must be bounded

• Dispatch latency: the amount of time required for the
scheduling dispatcher to stop one process and start
another -> preemptive kernels

Michele Zanella, ACSO Tutoring, Scheduling

Real-Time CPU Scheduling: minimizing latency

Michele Zanella, ACSO Tutoring, Scheduling

Real-Time CPU Scheduling: Priority-based

Priority-based Scheduling
• Providing a preemptive, priority-based scheduler only

guarantees soft real-time functionality
• Notion of periodic processes

• They require the CPU at constant intervals (periods).
• It has fixed processing time t, a deadline d by which it

must be serviced by the CPU, a period p
• Rate is 1/p

• Admission control: the scheduler can admit the process,
guaranteeing that it will complete on time, or reject the request
as impossible

Michele Zanella, ACSO Tutoring, Scheduling

Real-Time CPU Scheduling: Rate-Monotonic

Rate-Monotonic Scheduling
• It schedules periodic tasks using a static priority policy
• Preemptive
• Priority is the inverse of the period
• We assume that the processing time of a periodic process is

the same for each CPU burst.
• Optimal: if a set of processes cannot be scheduled by this

algorithm, it cannot be scheduled by any other that assigns
static priorities

• It is not possible fully to maximize CPU resources.
The worst-case CPU utilization for scheduling N processes is:

𝑁(2
$
3 − 1)

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: Rate-Monotonic

Example: Deadline: next period
Process Period Process Time

P1 50

P2 100

P1 P2

0 120 150 170

P1

10075705020

20
35

P2 P1 P2 P1 P2

175

P1 P1,P2 P1

Michele Zanella, ACSO Tutoring, Scheduling

Real-Time CPU Scheduling: EDF

Earlier-Deadline-First Scheduling
• Dynamically assigns proprities according to deadline
• The earlier the deadline, the higher the priority
• It does not require periodic processes nor processes with a

costant amount of CPU time per burst.
• Requirement: a process announces its deadline to the

scheduler when it becomes runable
• Theoretical optimality -> In practice we have context switching

cost!

Michele Zanella, ACSO Tutoring, Scheduling

Scheduling Techniques: EDF

Example: Deadline: next period
Process Period Process Time

P1 50

P2 80

P1 P2

0 145

P1

125100856025

25
35

P2 P1 P2

P1 P1 P1

50

P2

80 150 160

P2

Michele Zanella, ACSO Tutoring, Scheduling

Real-Time CPU Scheduling: Proportional Share

Proportional Share Scheduling
• It allocates T shares among all applications.
• It ensures that the application will have N/T of the total

processor time
• It must work in conjunction with an admission-control policy
• A request is admitted only if sufficient shares are available.

Michele Zanella, ACSO Tutoring, Scheduling

Real-Time CPU Scheduling: POSIX

• Extensions for real-time computing
• SCHED_FIFO: it schedules threads accoring to FCFS

policy
• SCHED_RR: it uses a round-robin policy

Michele Zanella, ACSO Tutoring, Scheduling

Exercise 2 (Thread & Parallelism)
27/02/2014

Condition loc in	TH_1 loc in	TH_2

After stat. A

After stat. C

After stat.	D

After stat.	E

EXISTS CAN	EXIST

CAN	EXIST EXISTS
EXISTS CAN	EXIST

Condition ONE TWO global

After stat. A

After stat. B

After stat. C

After stat. D

{0,1} {0,1,2}

EXISTS DOESN’T	EXIST

0 0	/	1	/	2
0 0	/	1

0	/	1 0	/	1	/	2

0	/	1 0

{0,1}

0	/	1

0

0	/	1

0

Michele Zanella, ACSO Tutoring, Scheduling

Exercise 2 (Thread & Parallelism)
27/02/2014

Situation TH_1 TH_2 TH_3 global

1

2

wait(TWO) 0	/	1

Second	wait(TWO) 0

Michele Zanella, ACSO Tutoring, Scheduling

Exercise 4 (Process State)
22/02/2017

Task	name IDLE P S Q

PID 1 2 3 4

TGID 1 2 3 4

S – sem_init 0 READY READY EXEC WAIT	(read)

Interrupt	from	
RT_clock

Interrupt	from	DMA,
all blocks transferred

READY READY READY READY EXEC N.E.

S – pthread_create 10

20

30

40

50

60

70

80

90

TH1

5

3

TH_1	– sem_wait

S – pthread_create

S – exit

TH2

6

3

P– waitpid

Q - exit

READYEXEC WAIT	(read)READYREADY

READYEXEC WAIT	(read) READYREADY

EXECREADY READY READYREADY

Interrupt	from	ck

WAIT	(wait S)EXEC READYREADYREADY

EXEC WAIT	(wait S)READYREADYREADY

NOT	EXIST NOT	EXISTEXEC READYREADY

WAIT	(waitpid) EXECNOT	EXIST NOT	EXISTREADY

NOT	EXISTNOT	EXIST NOT	EXISTEXECREADY

READY

NOT	EXIST

NOT	EXIST

NOT	EXIST

