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Info

• Contacts:
– michele.zanella@polimi.it

• HEAP Lab – Campus Leonardo, via Golgi 39, Edificio 
21, Piano 1, Ufficio 4, +39 02 2399 9613 
(send me an email to arrange for a meeting)

• Website:
– https://beep.metid.polimi.it

• Note for e-mail:
Subject: [ACSO] your subject
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The process

A process is the unit of work in modern time-sharing system.
• System processes
• User processes
Process memory page:
• Current status:

• Program counter
• Processor registers

• Text section: Program code
• Data section: Global vars
• Heap: Dynamically allocated
• Stack: Temporary data
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Process States

During execution a process can chenge its state:
• New: the process is being created
• Running: Instructions are being executed
• Waiting: the process is waiting for some event to occur (I/O, 

signal, …)
• Ready: The process is waiting to be assigned to a processor
• Terminated: The process has finished the execution

Only one process can be running on any processor at any
instant.



Michele Zanella, ACSO Tutoring, Process Management

Process Control Block

Information associated with a specific process are stored in the Process
Control Block (PCB):
• Process state: see previous slide
• Program counter: it indicates the address of the next istruction to be 

executed for the process
• CPU Registers: this information must be saved when an interrupt 

occurs, to allow the process to be continued correctly afterward
• CPU-Scheduling information: e.g., process priority, pointers to 

scheduling queues and other parameters
• Memory-management information: e.g., page tables
• Accounting information: e.g., amount of CPU and real time used
• I/O Status information: e.g., list of I/O devices allocated to the 

process, a list of open files
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Threads

• They allow processes to perform more than one task at a time
• Especially beneficial on multicore systems because of 

parallelism
• A basic unit of CPU utilization.
• PCB expanded to include information for each thread
• They shared with other threads belonging to the same process

its code section, data section, and other OS resources.
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Process Scheduling

Goals:
• Multiprogramming: having some process running at all times, 

to maximize CPU utilization
• Time sharing: switching the CPU among processes so 

frequently that users can interact with each program while it is
running

Scheduler: it is in charge of selecting an available process for 
program execution on the CPU
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Scheduling Queues

• Job queue: all processes in the system
• Ready queue: processes in main memory and ready that are 

waiting to be executed
• Device queue: processes waiting for a particolar I/O device

During the execution of a process one of the following events
could occour:
a) I/O request -> I/O queue
b) Creation of a new process and waiting for the child

termination
c) Interrupt and removed forcibly from the CPU (e.g., time slice

expiration)
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Schedulers

It is in charge of selecting the processes from the queues to be 
executed. Two types:
• Long-term (Job scheduler): selects processes from the 

mass-storage device and loads them into memory for 
execution.
It controls the degree of multiprogramming.
It has to take into account if a process is I/O-bound or CPU-
bound to select a good process mix.

• Short-term (CPU scheduler): selects from among the 
processes that are ready to execute and allocates the CPU to 
one of them.
It must be fast.

• Medium-term (Swapping scheduler): removes a process
from memory to reduce the degree of multiprogramming.
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Schedulers
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Context Switch

• Interrupts cause the OS to change a CPU from its current task 
and to run a kernel routine.

• The system has to save the current context of the running
process to resume it correctly and to execute the new one-> 
context switch.
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Operations on Processes

Process Creation
• The creating process: parent process
• Process Identifier (PID): used by the OS to identify uniquely a 

process.
• init process has PID 1
• During the process creation we have two possibilites:

1. The parent continues the execution in parallele with the its
children

2. The parent waits until one of its children have terminated
• There is also two adress-space possibilities:

1. The child process is a duplicate of the parent one
2. The child process has a new program loaded into it
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Operations on Processes

Process Creation
• fork(): it creates a new process that consists of a copy of 

the address space of the parent.
It returns 0 for the child process and the PID of the child for 
the parent process.

• exec(): it replaces the process’ memory space with a new 
program

• wait(): called by the parent to wait the termination of the 
child
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Operations on Processes

Process Termination
• exit(): called by a process to ask the OS to delete it after it

finishes executing its final statement.
All the resources are deallocated.

• The parent can retrieve the exit status of a child by passing a 
parameter to the wait function

• Zombie: a process that has terminated, but whose parent has
not yet called the wait function

• Orphans: a process whose parent did not invoke the wait
and instead terminated.
The child process is assigned to the init that will perform a 
wait
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Multithreaded Programming

• Motivation
1. Process creation is time consuming and resource 

intensive
2. Threads play a vital role in a remote procedure call 

(RPC) system
3. Most OS kernels re now multithreaded to perform 

specific task simultaneously.
• Benefits

1. Responsiveness
2. Resource sharing
3. Economy
4. Scalability



Michele Zanella, ACSO Tutoring, Process Management

Multicore Programming

• Each core appears as a separate processor to the OS

• Parallelism: if a system can perform more than one task 
simultaneously

• Concurrency: when a system supports more than one task by 
allowing all the task to make progress by assigning a separate 
thread to each core
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Programming challenges

• Identifying tasks
• Balance
• Data splitting
• Data dependency
• Testing and debugging



Michele Zanella, ACSO Tutoring, Process Management

Type of parallelism

• Data parallelism: distributing a subsets of the same data 
across multiple computing cores and performing the same
operation on each core

• Task parallelism: distributing tasks (threads) across multiple 
computing cores. Each thread is performing a unique
operation
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The Pthread Library

• API for creating and managing threads
• POSIX standard
• Any data declared globally are shared among all threads of the 

same process
• Separate threads begin execution in a specified function
• Include the pthread.h header file
• pthread_t tid declares the identifier for the thread
• pthread_attr_t: attributes for the thread set by the 

pthread_attr_init(&attr)
• pthread_create(&tid,&attr,function,arg): 

creates a separate thread passing the name of the function to 
begin the execution and its argument.
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Synchronization

• Cooperating system: can effect or be affected by other
processes executing in the system

• Concurrent access to shared data -> avoid data inconsistency
• Producer-Consumer problem -> the counter variable

while(true) {
while(counter==100);
buffer[in]=next_p;
in=(in+1)%100;
counter++;

}

while(true) {
while(counter==0);
next_c=buffer[out];
out=(out+1)%100;
counter--;

}
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Synchronization

• Problem! Following the execution of these two statemets, the 
value of the variable counter may be 4,5 or 6!

• Race Condition: the outcome of the execution depends on 
the particular order in which the access take place

• We need to ensure that only one process at a time can be 
manipulating the variable counter
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Critical Section

• Critical Section: segment of code in which the process may be 
changing common variables.

• When one process is executing in its critical section, no other process is
allowed to execute in its critical section.

• Entry section: where the process require permission to enter its critical
section

• Exit section: when the process exits its critical section
• A solution to the critical-section problem must satisfy three requirements:

• Mutual exclusion
• Progress
• Bounded waiting

• Preemptive kernels: allows process to be preempted while it is running
in kernel mode. More responsive and suitable for real-time programming

• Non-preemptive kernels: vice-versa
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Peterson's Solution

• Requires the two processes to share two data items:
• turn: indicates whose turin it is to enter the CS
• flag: indicates if a process is ready to enter its CS

• To enter the CS, process P
• sets flag[i]=true
• sets turn=j
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Mutex Locks (pthread)

• Protects CS: a process must acquire the lock before entering
the CS and relase it when it exits the CS

• pthread_mutex_t: data type for mutex locks
• pthread_mutex_init(): creates a mutex
• pthread_mutex_lock(): mutex is acquired.

If the mutex is unavailable, the calling thread is blocked until
the owner releases it

• pthread_mutext_unlock(): mutex is released
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Semaphore (POSIX)

• Is an integer variable that, a part for initialization, is accessed only
through two standard atomic operations. Types:

• Counting: used to control access to a given resource
consisting of a finite number of instances

• Binary: can range only between 0 and 1
• Named: can be shared by multiple unrelated processes
• Unnamed: can be used only by threads of the same process

• sem_init(): creates and initializes an unnamed semaphore. It is
passed three parameters: 

• Pointer to the semaphore
• A flag indicating the level of sharing
• The semaphore’s initial value

• sem_wait(): to acquire and decrement the semaphore
• sem_post(): to release and increment the semaphore
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Deadlock and Starvation

• Deadlock: a waiting process is never again able to change state, 
because the resources it has requested are held by other waiting
processes.
Necessary conditions:

• Mutual exclusion
• Hold and wait
• No preemption
• Circular wait

• Handling deadlocks:
• Preventing or avoiding
• Detecting deadlocks
• Ignoring the problem assuming that deadlocks never occur

• Starvation: processes wait indefinitely within the semaphore
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Exercise 1 (Thread & Parallelism)
21/11/2012

Condition local in	th_1 local in	th_2

After stat. A

After stat. C

After stat.	D

EXISTS EXISTS

CAN	EXIST EXISTS

DOESN’T	EXIST CAN	EXIST

Condition mess global

After stat. A

After stat. B

After stat. C

After stat. D

{0,1} {0,1,2}
1 0	/	2

0	/	1 1 /	2

0 1 /	2
0	/	1 1 /	2
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Exercise 1 (Thread & Parallelism)
21/11/2012

th_1 th_2 global

mutex_lock (law) sem_wait (mess) 2


