
Titolo presentazione
sottotitolo

Milano, XX mese 20XX

Process Management
A.Y. 2017-18
ACSO Tutoring
MSc Eng. Michele Zanella



Michele Zanella, ACSO Tutoring, Process Management

Info

• Contacts:
– michele.zanella@polimi.it

• HEAP Lab – Campus Leonardo, via Golgi 39, Edificio 
21, Piano 1, Ufficio 4, +39 02 2399 9613 
(send me an email to arrange for a meeting)

• Website:
– https://beep.metid.polimi.it

• Note for e-mail:
Subject: [ACSO] your subject



Michele Zanella, ACSO Tutoring, Process Management

The process

A process is the unit of work in modern time-sharing system.
• System processes
• User processes
Process memory page:
• Current status:

• Program counter
• Processor registers

• Text section: Program code
• Data section: Global vars
• Heap: Dynamically allocated
• Stack: Temporary data



Michele Zanella, ACSO Tutoring, Process Management

Process States

During execution a process can chenge its state:
• New: the process is being created
• Running: Instructions are being executed
• Waiting: the process is waiting for some event to occur (I/O, 

signal, …)
• Ready: The process is waiting to be assigned to a processor
• Terminated: The process has finished the execution

Only one process can be running on any processor at any
instant.



Michele Zanella, ACSO Tutoring, Process Management

Process Control Block

Information associated with a specific process are stored in the Process
Control Block (PCB):
• Process state: see previous slide
• Program counter: it indicates the address of the next istruction to be 

executed for the process
• CPU Registers: this information must be saved when an interrupt 

occurs, to allow the process to be continued correctly afterward
• CPU-Scheduling information: e.g., process priority, pointers to 

scheduling queues and other parameters
• Memory-management information: e.g., page tables
• Accounting information: e.g., amount of CPU and real time used
• I/O Status information: e.g., list of I/O devices allocated to the 

process, a list of open files



Michele Zanella, ACSO Tutoring, Process Management

Threads

• They allow processes to perform more than one task at a time
• Especially beneficial on multicore systems because of 

parallelism
• A basic unit of CPU utilization.
• PCB expanded to include information for each thread
• They shared with other threads belonging to the same process

its code section, data section, and other OS resources.



Michele Zanella, ACSO Tutoring, Process Management

Process Scheduling

Goals:
• Multiprogramming: having some process running at all times, 

to maximize CPU utilization
• Time sharing: switching the CPU among processes so 

frequently that users can interact with each program while it is
running

Scheduler: it is in charge of selecting an available process for 
program execution on the CPU



Michele Zanella, ACSO Tutoring, Process Management

Scheduling Queues

• Job queue: all processes in the system
• Ready queue: processes in main memory and ready that are 

waiting to be executed
• Device queue: processes waiting for a particolar I/O device

During the execution of a process one of the following events
could occour:
a) I/O request -> I/O queue
b) Creation of a new process and waiting for the child

termination
c) Interrupt and removed forcibly from the CPU (e.g., time slice

expiration)



Michele Zanella, ACSO Tutoring, Process Management

Schedulers

It is in charge of selecting the processes from the queues to be 
executed. Two types:
• Long-term (Job scheduler): selects processes from the 

mass-storage device and loads them into memory for 
execution.
It controls the degree of multiprogramming.
It has to take into account if a process is I/O-bound or CPU-
bound to select a good process mix.

• Short-term (CPU scheduler): selects from among the 
processes that are ready to execute and allocates the CPU to 
one of them.
It must be fast.

• Medium-term (Swapping scheduler): removes a process
from memory to reduce the degree of multiprogramming.



Michele Zanella, ACSO Tutoring, Process Management

Schedulers



Michele Zanella, ACSO Tutoring, Process Management

Context Switch

• Interrupts cause the OS to change a CPU from its current task 
and to run a kernel routine.

• The system has to save the current context of the running
process to resume it correctly and to execute the new one-> 
context switch.



Michele Zanella, ACSO Tutoring, Process Management

Operations on Processes

Process Creation
• The creating process: parent process
• Process Identifier (PID): used by the OS to identify uniquely a 

process.
• init process has PID 1
• During the process creation we have two possibilites:

1. The parent continues the execution in parallele with the its
children

2. The parent waits until one of its children have terminated
• There is also two adress-space possibilities:

1. The child process is a duplicate of the parent one
2. The child process has a new program loaded into it



Michele Zanella, ACSO Tutoring, Process Management

Operations on Processes

Process Creation
• fork(): it creates a new process that consists of a copy of 

the address space of the parent.
It returns 0 for the child process and the PID of the child for 
the parent process.

• exec(): it replaces the process’ memory space with a new 
program

• wait(): called by the parent to wait the termination of the 
child



Michele Zanella, ACSO Tutoring, Process Management

Operations on Processes

Process Termination
• exit(): called by a process to ask the OS to delete it after it

finishes executing its final statement.
All the resources are deallocated.

• The parent can retrieve the exit status of a child by passing a 
parameter to the wait function

• Zombie: a process that has terminated, but whose parent has
not yet called the wait function

• Orphans: a process whose parent did not invoke the wait
and instead terminated.
The child process is assigned to the init that will perform a 
wait



Michele Zanella, ACSO Tutoring, Process Management

Multithreaded Programming

• Motivation
1. Process creation is time consuming and resource 

intensive
2. Threads play a vital role in a remote procedure call 

(RPC) system
3. Most OS kernels re now multithreaded to perform 

specific task simultaneously.
• Benefits

1. Responsiveness
2. Resource sharing
3. Economy
4. Scalability



Michele Zanella, ACSO Tutoring, Process Management

Multicore Programming

• Each core appears as a separate processor to the OS

• Parallelism: if a system can perform more than one task 
simultaneously

• Concurrency: when a system supports more than one task by 
allowing all the task to make progress by assigning a separate 
thread to each core



Michele Zanella, ACSO Tutoring, Process Management

Programming challenges

• Identifying tasks
• Balance
• Data splitting
• Data dependency
• Testing and debugging



Michele Zanella, ACSO Tutoring, Process Management

Type of parallelism

• Data parallelism: distributing a subsets of the same data 
across multiple computing cores and performing the same
operation on each core

• Task parallelism: distributing tasks (threads) across multiple 
computing cores. Each thread is performing a unique
operation



Michele Zanella, ACSO Tutoring, Process Management

The Pthread Library

• API for creating and managing threads
• POSIX standard
• Any data declared globally are shared among all threads of the 

same process
• Separate threads begin execution in a specified function
• Include the pthread.h header file
• pthread_t tid declares the identifier for the thread
• pthread_attr_t: attributes for the thread set by the 

pthread_attr_init(&attr)
• pthread_create(&tid,&attr,function,arg): 

creates a separate thread passing the name of the function to 
begin the execution and its argument.



Michele Zanella, ACSO Tutoring, Process Management

Synchronization

• Cooperating system: can effect or be affected by other
processes executing in the system

• Concurrent access to shared data -> avoid data inconsistency
• Producer-Consumer problem -> the counter variable

while(true) {
while(counter==100);
buffer[in]=next_p;
in=(in+1)%100;
counter++;

}

while(true) {
while(counter==0);
next_c=buffer[out];
out=(out+1)%100;
counter--;

}



Michele Zanella, ACSO Tutoring, Process Management

Synchronization

• Problem! Following the execution of these two statemets, the 
value of the variable counter may be 4,5 or 6!

• Race Condition: the outcome of the execution depends on 
the particular order in which the access take place

• We need to ensure that only one process at a time can be 
manipulating the variable counter



Michele Zanella, ACSO Tutoring, Process Management

Critical Section

• Critical Section: segment of code in which the process may be 
changing common variables.

• When one process is executing in its critical section, no other process is
allowed to execute in its critical section.

• Entry section: where the process require permission to enter its critical
section

• Exit section: when the process exits its critical section
• A solution to the critical-section problem must satisfy three requirements:

• Mutual exclusion
• Progress
• Bounded waiting

• Preemptive kernels: allows process to be preempted while it is running
in kernel mode. More responsive and suitable for real-time programming

• Non-preemptive kernels: vice-versa



Michele Zanella, ACSO Tutoring, Process Management

Peterson's Solution

• Requires the two processes to share two data items:
• turn: indicates whose turin it is to enter the CS
• flag: indicates if a process is ready to enter its CS

• To enter the CS, process P
• sets flag[i]=true
• sets turn=j



Michele Zanella, ACSO Tutoring, Process Management

Mutex Locks (pthread)

• Protects CS: a process must acquire the lock before entering
the CS and relase it when it exits the CS

• pthread_mutex_t: data type for mutex locks
• pthread_mutex_init(): creates a mutex
• pthread_mutex_lock(): mutex is acquired.

If the mutex is unavailable, the calling thread is blocked until
the owner releases it

• pthread_mutext_unlock(): mutex is released



Michele Zanella, ACSO Tutoring, Process Management

Semaphore (POSIX)

• Is an integer variable that, a part for initialization, is accessed only
through two standard atomic operations. Types:

• Counting: used to control access to a given resource
consisting of a finite number of instances

• Binary: can range only between 0 and 1
• Named: can be shared by multiple unrelated processes
• Unnamed: can be used only by threads of the same process

• sem_init(): creates and initializes an unnamed semaphore. It is
passed three parameters: 

• Pointer to the semaphore
• A flag indicating the level of sharing
• The semaphore’s initial value

• sem_wait(): to acquire and decrement the semaphore
• sem_post(): to release and increment the semaphore



Michele Zanella, ACSO Tutoring, Process Management

Deadlock and Starvation

• Deadlock: a waiting process is never again able to change state, 
because the resources it has requested are held by other waiting
processes.
Necessary conditions:

• Mutual exclusion
• Hold and wait
• No preemption
• Circular wait

• Handling deadlocks:
• Preventing or avoiding
• Detecting deadlocks
• Ignoring the problem assuming that deadlocks never occur

• Starvation: processes wait indefinitely within the semaphore



Michele Zanella, ACSO Tutoring, Process Management

Exercise 1 (Thread & Parallelism)
21/11/2012

Condition local in	th_1 local in	th_2

After stat. A

After stat. C

After stat.	D

EXISTS EXISTS

CAN	EXIST EXISTS

DOESN’T	EXIST CAN	EXIST

Condition mess global

After stat. A

After stat. B

After stat. C

After stat. D

{0,1} {0,1,2}
1 0	/	2

0	/	1 1 /	2

0 1 /	2
0	/	1 1 /	2



Michele Zanella, ACSO Tutoring, Process Management

Exercise 1 (Thread & Parallelism)
21/11/2012

th_1 th_2 global

mutex_lock (law) sem_wait (mess) 2


